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At present there is a sufficiently large number of studies (see, e.g., [I, 2]), theoret- 
ical as well as experimental, which consider the influence of surface cooling or heating on 
the stability of a laminar boundary layer and its transition to turbulence. Investigations 
were carried out to explain the effect of temperature ratio, i.e., the ratio of surface tem- 
perature to external flow temperature with their values kept constant. It is well known that 
for a gas, heating results in a decrease and cooling results in an increase in critical Reyn- 
olds number. The latter factor can be used to laminarize boundary layer. However, in prac- 
tical applications an appreciable gradient in temperature along the surface is often found to 
exist. Approximate theoretical analysis shows that such temperature gradients significantly 
influence the characteristics of a stationary boundary layer: velocity and temperature pro- 
files and so on. Hence it must be expected that nonuniform surface temperature distribution 
will appreciably affect flow stability. Such studies have not been carried out for gases 
except in [3] where the influence of a heated leading edge on boundary-layer stability was 
considered. It is shown below that for constant total heat flux the point of instability 
could move upstream as well as downstream depending on the surface temperature distribution. 
In view of this, it follows that by an appropriate selection of surface temperature distribu- 
tion it is possible to obtain larger runs of laminar flow which is exceptionally important 
from the point of view of boundary-layer control, and, in particular, laminarization. 

I. Problem Formulation. 

The stability of a plane, subsonic boundary layer with nonuniform surface temperature is 
considered. The mathematical model consists of a system of equations including the continuity 
equation, Navier-Stokes equations, and energy equation neglecting viscous dissipation: 
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D/Dt = O/Ot + uO/Ox + vO/@. 

It is assumed that the fluid obeys the equation of state for a perfect gas. The boundary 
conditions are: 

u =  0, T =  T~, v , = 0  ( g = 0 ) ,  
U--->" Ue, T--~ Te (y-+ ~). (l.2a) 

The surface temperature is specified by 

T w = T~ + T~ '~. (l.2b) 

Here g = x/L; x, y are the streamwise and normal coordinates; u, v are the corresponding 
velocity components; p is the pressure; T, p are the fluid temperature and density; Cp is 
its specific heat at constant pressure; D, % are coefficients of viscosity and thermal con- 
ductivity; indices w and e denote values of parameters at the wall and in external flow 
respectively. 
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The disturbance equations are obtained by linearizing the system of equations (i.i). 
Using the obvious assumption of small wavelength of disturbances %0 (Tollmien-Schlichting 
waves) compared to the characteristic length of the temperature variation which is of the 
same order as the surface length L, it is possible, with a parallel-flow approximation in 
the boundary layer [i, 2] to express the perturbation of stream function in the form of a 
plane wave ~(y) exp [ia(x - ct)] where ~(g) is the amplitude of the stream function. 

To facilitate further analysis a new independent variable is introduced 

/ u  \1 /2  

(in further analysis a prime will denote differentiation with respect to this variable). 
It is known that in g, q coordinates, steady boundary-layer equations for given conditions 
(Faulkner-Skan type flows) permit similarity solutions. 

The linearized equations can be reduced to one equation 

,, = = . v (~Iv ) 

(1.3) 
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where a, c are the disturbance wave number and phase velocity; ~ = T/Te; X = ~'/~; ~ = ~/De; 
u is the free-stream velocity; Re is the Reynolds number based on displacement thickness. 
Since the boundary layer is assumed to be low subsonic, temperature fluctuation and changes 
in physical properties of the fluid are neglected [i]. The boundary conditions are: 

= o ,  r = 0 (n = 0), r  ~ ' ~ 0  ( n ~  ~ ) .  ( 1 . 4 )  

E q u a t i o n  ( 1 . 3 )  r e d u c e s  t o  t h e  w e l l  known O r r - S o ~ e r f e l d  e q u a t i o n  when @ = 1. 

C o n s e q u e n t l y ,  t h e  p r e s e n t  p r o b l e m  r e d u c e d  t o  t h e  d e t e r m i n a t i o n  o f  e i g e n v a l u e s  o f  Eq. 
( 1 . 3 )  w i t h  homogeneous  b o u n d a r y  c o n d i t i o n s  ( 1 . 4 ) .  I n  o r d e r  t o  s o l v e  i t ,  i t  i s  n e c e s s a r y  t o  
determine the coefficients of Eq. (1.3) which contain velocity, temperature, and viscosity 
distributions across the boundary layer, and also their derivatives in q. 

Thus, it is necessary to know the mean flow characteristics which are determined from 
equations for a thermal boundary layer 
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with boundary conditions 

u = 0 ,  v = 0 ,  T = T~,= T . +  T~ '~ ( y = 0 ) ,  

u - +  u. .  T - +  T~ ( y - ) -  oo ). 

In similarity variables ~, ~, this boundary-value problem takes the form 

a , ~ + t  _ i , ~ )  
o-~ (K/") + T / / "  + m ( r  = O, 

m + ~  , 1, (1.5) t o (KO') + ----~10 + n ( l - - O )  =.0; 
Pr 011 

/ = 0 ,  /" = 0 ,  O = 0  (n = 0 ) ,  (1 .6)  
I' --+ i ,  O - - + i  (~q ~ r162 

due ~ u T - - - - "  - - d q ;  O---- - -T,  
Here K = ~P/~ePe; m = Ue d~' ]= o u e Te__T------- ~, Pr = ~Cp/~ is the Prandtl number. 

0 

2. Preliminary Qualitative Analysis. 

Before obtaining a numerical solution to the boundary-value problems (1.5), (1.6) and 
(1.3), (1.4), some qualitative analysis is carried out for the nature of the influence of 
nonuniform surface temperature on boundary-layer stability. It is known that this influence 
is primarily introduced through the change in mean flow velocity profile. 

Let us compare these profiles when the surface temperature is constant with those for 
power-law variation of surface temperature (l.2b). Consider the boundary layer on a flat 
plate (m = 0) with K = i. It is convenient to return to the usual nondimensional coordinate 

n 

z = 11 + Ti~n.I (I--@)d~ and compare the values of z and z 0 for two different velocity profiles 
0 

at a given location. Here z = y/d,, and the index 0 denotes constant surface temperature. 

It is necessary to know functions O(q) and O0(q) for a comparison. Their form is deter- 
mined under appropriate conditions: i.e., we require constant total heat flux along the plate 
length for different surface temperature distributions. As mentioned above, in this case it 
is possible to judge which distribution is the most desirable from the point of view of 
stability 

1 i 

0 0 

This condition determines the relation between T10 and Tl: 

T1 o =  T1B, B =  1 0'~ 
i ~ 2n O'ow " 

Introducing a new function 

Q ( L  ~) = ( l  - o )~ , ,  - ( i  - Oo)B,  
we get the required difference in the form 

z - -  z o = T 1 ,t Qd~l, 
o 

where the function Q satisfies the boundary-value problem 

Q" + -~- IQ '  - n P r Q / '  = O, 

Q w = ~ - - B  Ol = 0), 

Q--+ O ( ~---~ ~ ). 

It follows from an analysis of its solution that for all q _> 0 with Qw > 0, the function 
Q > 0, and when Qw < 0, Q < 0. 
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Thus we arrive at the following conclusions on the basis of above analysis. With sur- 
face cooling (T I < 0) and heating (T I > 0) two effects of opposite nature, relative to the 
nature of the influence of nonuniform surface temperature distribution on boundary-layer sta- 
bility, are possible, depending on the sign and value of its gradient: when T l < 0 and n > 0, 
it is stabilizing and when n < 0 it is destabilizing; when T I > 0 and n > 0, it is destabil- 
izing and with n < 0 it is stabilizing. 

3. Computational Results. 

Results of computation of laminar boundary-layer stability to illustrate the above con- 
clusions are given below. The eigenvalue problem (1.3), (1.4) was solved by the method of 
orthogonalization [4, 5]. The coefficients were determined from the solution of the boundary- 
value problem (1.5), (1.6). 

Computed results are expressed in the form of neutral stability curves F = F(Re), where 
F = ~Ve/Ue 2, and relations for spatial-amplification factors ~i(F) at fixed Re. It was as- 
sumed that K = i, Pr = 0.72. In the case of surface cooling as well as heating, two surface 
temperature distributions were specified: linear (n = 1) and power law (n = 0.4). In all 
figures i denotes uniform surface temperature and 2 denotes nonuniform distribution. 

Surface Cooling. i. Figure 1 (n = i, T I = -0.5, Re = 10s). It is seen that the region 
of unstable frequencies appreciably narrows. The minimum critical Reynolds number Re, = 4.10 4 
whereas for uniform cooling Re, = 1.5"10 3 . This means that the minimum length of the laminar 
segment increases by nearly three orders of magnitude. At lower values of F the difference 
is not that big but still quite appreciable. Thus, for F = 2-10 -7 , the length corresponding 
to the beginning of the growth of disturbances with nonuniform cooling increases nearly 2.5 
times. Similar stabilizing influence is exhibited by nonuniform surface temperature distribu- 
tion on the amplification factor ~i" It is seen that for the given Re it decreases nearly by 
a factor of three. 

2. Figure 2 (n = -0.4, T l =-0.1, Re = 10s). Unlike the previous case, a destabiliza- 
tion and an increase in ~i are observed. The minimum value of Re, = 600 as against Re, = 900 
with uniform cooling, which corresponds to approximately two-fold decrease in the length of 
the laminar segment. 

Surface Heating. i. Figure 3 (n = I, T I = 0.5, Re = 2.103). There is a reduction in 
stability and an increase in the factor ~i; Re, = 200 compared to Re, = 340 for uniform heat- 
ing. At lower values of the parameter F the difference is less significant. Where Re = 2.103 , 
the quantity ~i increases by a factor of -1.5. 

2. Figure 4 (n = -0.4, T l = 0.i, Re = 2-103). Nonuniform surface heating is stabilizing 
and the amplification factor is reduced. The minimum length of the laminar segment increases 
by ~75%. When F = 2.10 -4 this increase is not as significant and is ~23%, the value of ~i 
decreases by 25%. 

Thus, the above analysis and computational results showed sufficiently large influence 
of nonuniform surface temperature distribution on subsonic laminar boundary layer. This 
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influence is especially large for cooled surface if its temperature decreases downstream. 
Consequently, the application of such a temperature distribution is more effective for laminar- 
ization compared to uniformed distribution. 
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EFFECT OF SUCTION ON LAMINAR COMPRESSIVE FLOW AND HEAT TRANSFER 

CLOSE TO A DISK ROTATING IN A GAS 

V. D. Borisevich and E. P. Potanin UDC 532.526.75 

Suction for gas flowing over a wall may be used to combat flow instability in the region 
of the leading edge of a wing [I], and the nature of flow destabilization in which there is 
similar dew~.lopment of instability in the boundary layer on a rotating disk [2]. Suctioning 
of the boundary layer flowing over bodies or rotating surfaces is also an effective method 
for intensifying heat and mass transfer processes [3]. A knowledge of hydrodynamic and ther- 
mal characteristics of the boundary layer on a rotating disk is also necessary in a whole 
series of other technical situations [4]. 

In order to study uncompressed laminar flow close to a rotating disk with different ex- 
ternal conditions, a method has been used successfully for averaging nonlinear inertial terms 
in equations of motion over the thickness of a boundary layer (the Slezkin-Targ method) mak- 
ing it possible to obtain analytical relationships for flow characteristics required in carry- 
ing out engineering calculations [5-8]. In the current work on the basis of a modified 
Slezkin-Targ method a study is made of a laminar boundary layer on an infinite disk rotating 
in a gas wi?h presence of uniform suction from its surface taking account of medium compres- 
sibility. A process is considered for heat exchange between the disk and the external flow. 
Calculations are made for the thickness of hydrodynamic and thermal boundary layers, and also 
values of the coefficient of the disk resistance moment c M and Nusselt number Nu in relation 
to suction parameter and the ratio of temperature in the external flow and in the disk. It 
is demonstrated that suction markedly affects the profile of hydrodynamic flow at the disk 
surface, increasing its resistance moment and heat emission. Results of calculating c M are 
compared with known data for accurate solution of equations for a boundary layer on a rotating 
disk in the case of an incompressible liquid. 

i. Ignoring viscous dissipation [5, 9] equations for spatial hydrodynamic and thermal 
boundary layers on a rotating disk in generally accepted notations are written in the form 

P u - a T + w  oz - Or +77  ~l-aT; 

( ov &' ~L) o ( a v )  (1 2) 
P U-gTr+W-gT+ =-aT ~1-57; 

o 0 (pru,) ~--- O; 
Or (pru) + ~'a (1 .3 )  
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